CT-SRCNN: Cascade Trained and Trimmed Deep Convolutional Neural Networks for Image Super Resolution
نویسندگان
چکیده
We propose methodologies to train highly accurate and efficient deep convolutional neural networks (CNNs) for image super resolution (SR). A cascade training approach to deep learning is proposed to improve the accuracy of the neural networks while gradually increasing the number of network layers. Next, we explore how to improve the SR efficiency by making the network slimmer. Two methodologies, the one-shot trimming and the cascade trimming, are proposed. With the cascade trimming, the network’s size is gradually reduced layer by layer, without significant loss on its discriminative ability. Experiments on benchmark image datasets show that our proposed SR network achieves the state-of-the-art super resolution accuracy, while being more than 4 times faster compared to existing deep super resolution networks.
منابع مشابه
A Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملSuper Resolution Convolutional Neural Networks for Increasing Spatial Resolution of ^1 H Magnetic Resonance Spectroscopic Imaging
Proton magnetic resonance spectroscopic imaging (H-MRSI) provides noninvasive information regarding metabolic activity within the tissues. One of the main problems of MRSI is low spatial resolution due to clinical scan time limitations. Advanced post-processsing algorithms, like convolutional neural networks (CNN) might help with generation of super resolution MR spectroscopic images. In this s...
متن کاملAccelerating the Super-Resolution Convolutional Neural Network
As a successful deep model applied in image super-resolution (SR), the Super-Resolution Convolutional Neural Network (SRCNN) [1, 2] has demonstrated superior performance to the previous hand-crafted models either in speed and restoration quality. However, the high computational cost still hinders it from practical usage that demands real-time performance (24 fps). In this paper, we aim at accel...
متن کاملPerformance Evaluation of Super-Resolution Methods Using Deep-Learning and Sparse-Coding for Improving the Image Quality of Magnified Images in Chest Radiographs
Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed images with artifacts that can make interpretation difficult. The purpose of this study was to investigate the effectiveness of super-resolution methods for improving the image qu...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.04048 شماره
صفحات -
تاریخ انتشار 2017